Rare - Earth Doped Aluminum Oxide Lasers for Silicon Photonics by Emir Salih Magden

نویسندگان

  • Emir Salih Magden
  • Leslie A. Kolodziejski
چکیده

A reliable and CMOS-compatible deposition process for amorphous Al2O3 based active photonic components has been developed. Al2O3 films were reactively sputtered, where process optimization was achieved at a temperature of 250 C, with a deposition rate of 8.5 nm/min. With a surface roughness of 0.3 nm over a 1 μm area, background optical losses as low as 0.1 dB/cm were obtained for undoped films. The development of active photonics components has been realized by use of rare-earth metals as dopants. By cosputtering aluminum and erbium targets, Er dopants at concentrations on the order of 1.0x10 cm have been added to the Al2O3 host medium. Resulting Er3+:Al2O3 films have been characterized, and over 3 dB/cm absorption has been measured over a 20 nm bandwidth. Following the material development, distributed Bragg reflector lasers were designed and fabricated in a CMOS foundry. The laser cavity was created by introducing gratings on either side of a Si3N4 waveguide. Er 3+:Al2O3 was deposited in SiO2 trenches on top of the Si3N4 layer, eliminating the need for any subsequent etching steps. On-chip laser output of 3.9 μW has been recorded at a wavelength of 1533.4 nm, with a side mode suppression ratio over 38.9 dB. Thesis Supervisor: Leslie A. Kolodziejski Title: Professor of Electrical Engineering and Computer Science

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliable Silicon Photonic Light Source Using Curved Distributed Feedback Lasers

We propose a curved erbium doped aluminum oxide (Al2O3:Er) distributed feedback (DFB) laser for a reliable integrated photonics light source. The curved structure allows a compensation for radially varying film thickness in Al2O3:Er deposition process. OCIS codes: (130.0130) Integrated optics; (130.3120) Integrated optics devices; (140.3460) Lasers; (130.2790) Guided waves.

متن کامل

Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform.

We demonstrate monolithic integration of a wavelength division multiplexed light source for silicon photonics by a cascade of erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers. Four DFB lasers with uniformly spaced emission wavelengths are cascaded in a series to simultaneously operate with no additional tuning required. A total output power of -10.9  dBm is obtained fr...

متن کامل

Monolithically-integrated distributed feedback laser compatible with CMOS processing.

An optically-pumped, integrated distributed feedback laser is demonstrated using a CMOS compatible process, where a record-low-temperature deposited gain medium enables integration with active devices such as modulators and detectors. A pump threshold of 24.9 mW and a slope efficiency of 1.3 % is demonstrated at the lasing wavelength of 1552.98 nm. The rare-earth-doped aluminum oxide, used as t...

متن کامل

Athermal synchronization of laser source with WDM filter in a silicon photonics platform

In an optical interconnect circuit, microring resonators (MRRs) are commonly used in wavelength division multiplexing systems. To make the MRR and laser synchronized, the resonance wavelength of the MRR needs to be thermally controlled, and the power consumption becomes significant with a high-channel count. Here, we demonstrate an athermally synchronized rare-earth-doped laser and MRR. The las...

متن کامل

Broadband 2-µm emission on silicon chips: monolithically integrated Holmium lasers.

Laser sources in the mid-infrared are of great interest due to their wide applications in detection, sensing, communication and medicine. Silicon photonics is a promising technology which enables these laser devices to be fabricated in a standard CMOS foundry, with the advantages of reliability, compactness, low cost and large-scale production. In this paper, we demonstrate a holmium-doped dist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014